Когда фантомное питание не требуется
Если для конденсаторных микрофонов наличие фантомного питания обязательно, для ленточных микрофонов оно противопоказано. Подача тока на подобные устройства неминуемо приводит к их поломке.
Схема работы ленточных микрофонов была придумана задолго до появления фантомного питания в музыкальной индустрии — первые ленточные микрофоны появились в 1920-х годах. Для записи сигнала ленточные микрофоны используют тонкую металлическую ленту, колеблющуюся вместе с поступающими звуковыми волнами.
Устройствам подобного типа не нужно дополнительное электричество для работы. Под воздействием тока с напряжением 48 В ленты рвутся, а микрофон перестаёт работать. Современные «ленточники» менее чувствительны к этой проблеме, но правило остаётся тем же — на ленточные микрофоны нельзя подавать фантомное питание.
Кратковременная подача энергии также может стать причиной поломки, если в микрофонный вход подключен несбалансированный источник питания. Сбалансированные источники звука не боятся поступающего электричества.
Куда встраивается?
Такие источники чаще всего встраиваются в приемные устройства. Ими могут быть микшерные пульты, микрофонные предусилители и другие подобные аппараты. Однако в некоторых случаях фантомное питание может быть не предусмотрено изготовителем, или же необходимо питание намного ниже, например, 24 или 12 В. Тогда нужно приобрести фантомное питание отдельно, при этом использование его должно быть сквозным. Другими словами, его нужно подключить к микрофону, а выход из блока – к приемному устройству.
Если питание приобреталось отдельно, то следует знать, что оно должно крепиться в любом удобном и доступном месте, поскольку устройство имеет кнопку, при помощи которой фантомное питание можно включить или выключить.
Покупка фантомного питания также необходима в том случае, если человека не устраивает качество того элемента, что уже встроен в оборудование. Возможно, что имеющееся питание издает гул, или появляются неприятные шумовые эффекты. Обычно такие проблемы имеют место в дешевом оборудовании.
Сам блок обычно питается от батарей либо аккумуляторов, и в нем должен присутствовать встроенный НЧ-фильтр, который и отвечает за отсутствие низкочастотного гула. В обычных конденсаторных микрофонах питание используется и для поляризации.
А также стоит отметить, что такие микрофоны могут подключаться к порту XLR.
Схема лампового микрофона 19А9
Модель19А9 всегда стояла особняком прежде всего из-за своей неповторимой конструкции корпуса и непревзойдённого дизайна. Корпус 19А9 состоит из двух металлических полосочек и колечка, на которые крепятся разъём, лампа и капсюль, а далее на нижнюю часть микрофона надевается выдавленный из тонкого железа кожух, а на капсюль одеваются две крышки – спереди и сзади. И всё! Никакого литья (корпуса для 19А19 отливали из алюминия, и потом долго фрезеровали), из деталей внутри – лишь самая маленькая для 50-х годов ширпотребовская радиолампа 6Ж1П, два сопротивления и один конденсатор. Сигнал, анодное напряжение, напряжение накала, напряжение поляризации и общий провод – всё идёт через 4-х штырьковый разъём по 3 (!) проводам. Посчитали? Да, у меня тоже получается, что их должно быть около 7, ну минимум, 6, но их только 3, и всё это работает, и довольно неплохо! Открываем справочник по радиолампам на странице 6Ж1П или 6Ж2П, читаем: высокочастотный пентод с короткой характеристикой, предназначен для широкополосного усиления напряжения высокой частоты, и приводятся схемы всяких преобразователей частоты для телевизоров. Какой напрашивается вывод? Правильно: не читайте перед обедом советских газет! Ну не было в те времена компактных низкочастотных триодов. Ни 6Н1П, ни 6Н2П, ни тем более радиолампы предыдущих поколений ни за что не поместились бы в корпус 19А9. У пентодов, особенно у высокочастотных, большое усиление, в низкочастотных трактах они склонны к самовозбуждению, кроме того у пентодов высокое внутреннее сопротивление, они не могут работать корректно на низкоомную нагрузку, такую как звуковой трансформатор, а без него в ламповом микрофоне не обойтись. Что делает в такой ситуации простой русский инженер? Он говорит: 1. пентод включаем по триодной схеме, соединив вторую сетку с анодом, уменьшая таким образом коэффициент усиления, уровень шумов и гармоник, и внутреннее сопротивление лампы 2. переходная ёмкость между капсюлем и управляющей сеткой усилительной лампы нам не нужна — мы изолируем капсюль от корпуса (массы) и соединим его с положительным напряжением — таким образом будет осуществлена поляризация мембраны капсюля, заодно мы уменьшим схему на одно сопротивление, так как резистор смещения входной сетки в данном случае будет выполнять и функцию резистора, через которое подаётся поляризующее напряжение 3. звуковой трансформатор «вынесем за ворота» и разместим в блоке питания микрофона, а заодно, (чего уж мелочиться) вынесем из микрофона и анодное сопротивление с разделительным конденсатором – всё равно их место рядом с трансформатором 4. поскольку анодное сопротивление из микрофона мы удалили, поляризацию мембраны будем осуществлять прямо от анода лампы, — не тащить же из за этого ещё один провод по кабелю! Создаётся ООС (отрицательная обратная связь) между сеткой и анодом усилительной лампы… ну и прекрасно! – говорит русский инженер – всё равно у нас есть запас по усилению, ведь это же пентод, а с прямой частотонезависимой ООС звучать будет даже лучше 5. один из выводов накала лампы, как водится, соединяем с общим минусом (массой), и у нас остаются те самые три провода: накал, анодное напряжение (оно же поляризующее, оно же сигнал) и общий (он же экран). Вот и вся наука. Единственное замечание, которое хотелось бы сделать к этой схеме – это прохождение звукового сигнала по кабелю. Поскольку сигнал передаётся небалансным способом, он, казалось бы должен быть очень чувствительным к внешним электромагнитным помехам, тем более что уровень его не велик. Но в том-то и фишка, что, поскольку он снимается с анода, он имеет постоянный потенциал порядка 50…60В, и большая часть внешних электромагнитных помех просто-напросто не может преодолеть электромагнитное поле самого провода. НО! Качество передаваемого по кабелю звукового электрического сигнала от микрофона к блоку питания сильно зависит от качества и длины этого провода. Чем он короче и чем толще изоляция между проводами внутри провода (чем меньшую ёмкость он имеет), тем будет лучше. В длинном тонком или старом проводе ВЧ составляющие будут затухать, и Вы можете так и не услышать всех прелестей модели ЛОМО 19А9.
Так уж получается, что в рамках этой статьи мы рассматриваем схемы микрофонов, не привязываясь линейно ко времени их появления, и движемся скорее назад, всё глубже, к корням производства микрофонов. А что же было до этого? А до этого был, например, студийный микрофон Neumann U 47, не менее интересный по своим схемотехническим решениям.
Схема БП с умножителем выходной емкости для увеличения шумоподавления
Третий подход заключается в использовании того факта, что чувствительность выходного сигнала микрофона не очень сильно зависит от качества напряжения питания, поэтому фантомное питание не требует особо хорошей стабилизации напряжения. То есть можно подавить дополнительный конденсатор вместе с выходными конденсаторами на выходе, чтобы увеличить их эффективность в подавлении помех.
Вот осциллограммы до и после фильтра. Выходное напряжение от повышающего стабилизатора показывает примерно 0,2% уровень шума при измерении на конденсаторе C4 (перед фильтром). А выходной сигнал от конечного фильтра уже с гораздо меньшим уровнем шума в сигнале — 0,002%.
В этой схеме конденсатор емкостью 100 мкФ уменьшает пульсацию тока базы транзистора, поэтому его влияние на ток коллектора усиливается коэффициентом усиления транзистора. Работа схемы тем лучше, чем больше усиление транзистора. В крайних случаях, два транзистора могут использоваться по схеме Дарлингтона, которая дает усиление ещё выше.
Сигнальный шум имеет амплитуду от пика до пика около 80 мВ, что составляет около 0,2% от уровня сигнала (напряжения питания). Хотя этого может быть уже достаточно для многих целей, добавление простого фильтра, описанного выше, дает гораздо лучшую картину — достигнутый уровень шума составляет около 1 мВ. Это около 0,002%, что достаточно даже для самых требовательных аудио устройств.
Транзистор SBCP56-16T1G был выбран из-за высокого допустимого напряжения коллектора (100 В) и высокого коэффициента усиления при низких токах (25 для Ic = 5 мА). Выходное напряжение падает с 47,8 В при нагрузке 2 кОм до 47,5 В при нагрузке 500 Ом, чего вполне достаточно для применения в источниках питания конденсаторных микрофонов. Этот транзистор был выбран, а также испытан чисто экспериментально — можете проверить тут и другие.
Испытания проводились при входном напряжении питания 16 В, но всё будет аналогичным и для источника питания в диапазоне от 12 В до 24 В. В некоторых случаях может потребоваться питание от USB 5 В, что может быть достигнуто путем снижения частоты переключения LT8362 с 2 до 1 МГц. Также потребовалось бы увеличить L1 с примерно 10 мкГн до 15 мкГн и удвоить выходной конденсатор С4, чтобы сохранить те же эффективные характеристики.
Форум по обсуждению материала МАЛОШУМЯЩИЙ БП ФАНТОМНОГО ПИТАНИЯ 48 В
|
|
||
|
|
Предостережения
AKG C1000S , использует фантомное питание или аккумулятор
Некоторые микрофоны предлагают на выбор питание от внутренней батареи или (внешнее) фантомное питание. В некоторых таких микрофонах рекомендуется извлекать внутренние батареи при использовании фантомного питания, так как батареи могут разъесться и протечь химикаты. Другие микрофоны специально предназначены для переключения на внутренние батареи в случае отказа внешнего источника питания, что может быть полезно.
Фантомное питание не всегда реализуется правильно или адекватно даже в предусилителях, микшерах и рекордерах профессионального качества. Частично это связано с тем, что конденсаторные микрофоны с 48-вольтовым фантомным питанием первого поколения (с конца 1960-х до середины 1970-х годов имели простую схему и требовали лишь небольшого количества рабочего тока (обычно менее 1 мА на микрофон), поэтому фантомное питание схемы, обычно встроенные в записывающие устройства, микшеры и предусилители того времени, были разработаны с предположением, что этот ток будет достаточным. Исходная спецификация фантомного питания DIN 45596 требовала не более 2 мА. Эта практика сохранилась до настоящего времени; многие цепи фантомного питания на 48 В, особенно в недорогом и портативном оборудовании, просто не могут обеспечить более 1 или 2 мА без выхода из строя. Некоторые схемы также имеют значительное дополнительное сопротивление последовательно со стандартной парой резисторов питания для каждого микрофонного входа; это может не сильно повлиять на микрофоны с низким током, но может отключить микрофоны, которым требуется больше тока.
Конденсаторные микрофоны середины 1970-х годов и позже, предназначенные для фантомного питания 48 В, часто требуют гораздо большего тока (например, 2–4 мА для бестрансформаторных микрофонов Neumann, 4–5 мА для серии Schoeps CMC («Colette») и микрофонов Josephson 5). –6 мА для большинства микрофонов Shure серии KSM, 8 мА для САПР Equiteks и 10 мА для земляных работ). Стандарт IEC дает 10 мА как максимально допустимый ток на микрофон. Если его требуемый ток недоступен, микрофон все равно может выдавать сигнал, но не может обеспечить ожидаемый уровень производительности. Конкретные симптомы несколько различаются, но наиболее частым результатом будет снижение максимального уровня звукового давления, с которым микрофон может справиться без перегрузки (искажения). Некоторые микрофоны также имеют более низкую чувствительность (выходной уровень для заданного уровня звукового давления).
Большинство выключателей заземления имеют нежелательный эффект отключения фантомного питания. Между контактом 1 микрофона и отрицательной стороной 48-вольтового источника питания всегда должен быть путь постоянного тока, если питание должно достигать электроники микрофона. Поднятие заземления, которое обычно является контактом 1, прерывает этот путь и отключает фантомное питание.
Бытует мнение, что подключение динамического или ленточного микрофона к входу с фантомным питанием приведет к его повреждению. Это повреждение может произойти по трем причинам. В случае неисправности кабеля фантомное питание может повредить некоторые микрофоны из-за подачи напряжения на выход микрофона. Также возможно повреждение оборудования, если вход с фантомным питанием подключен к несбалансированному динамическому микрофону или электронным музыкальным инструментам. Переходное генерируются , когда микрофон горячей подключен к входу с активным фантомным питанием может привести к повреждению микрофона и , возможно, предусилитель схемы ввода , поскольку не все контакты разъема микрофона замыкающего контакта в то же время, и есть момент , когда Ток может протекать для зарядки емкости кабеля с одной стороны входа с фантомным питанием, а не с другой. Это особенно проблема с длинными микрофонными кабелями. Считается хорошей практикой отключать фантомное питание на устройствах, которым оно не требуется.
Куда встраиваются источники фантомного питания
Новый источник питания требует подключения безопасным способом. При неправильном подсоединении прибора микрофон работать не будет. Закреплять устройство можно в любом месте. Однако при работе с микрофоном не должно возникать затруднений. Прибор располагают в доступном месте, после чего закрепляют и подключают все необходимые провода. Не забывают о кабеле для подсоединения звукозаписывающего средства. Специальная клавиша помогает включать и деактивировать дополнительное питание по мере необходимости.
Источники фантомного питания подключаются безопасным способом.
Схема лампового микрофона Gefell RFT
Схема почти классическая. Разделительный конденсатор в выходном контуре лампы и звукового трансформатора соединён не с общим минусом, а с общим плюсом (любят они это дело), плюс введена ООС по постоянному току в цепь смещения сетки.
Подведу итоги нашего обозрения. В схемах студийных ламповых микрофонах трудно придумать что-либо новое, каждая из них по-своему хороша, и отвечает заданным характеристикам. Внимательным нужно быть к компонентам, из которых состоит электрическая схема микрофона, особенно к конденсаторам в старых моделях и ко всем без исключения деталям в новых моделях. Большое количество радиодеталей и переключателей не всегда является плюсом для студийных микрофонов. Моё мнение, если Вы гонитесь за естественностью, стремитесь к простоте. На практике часто получается, что вроде бы, да, старый ламповый микрофон не блещет линейностью АЧХ, но зато и не искажает звук, и не приукрашивает его. Ламповые микрофоны (в особенности отечественные) оставляют главное – живизну материала, а дальше – делайте, что хотите. Хотите – добавляйте частоты, которых Вам не хватает, хотите – вырезайте лишнее, но делайте это уже ПОСЛЕ записи. Основное в микрофоне – это всё-таки капсюль, в основном за него мы платим эти бешенные деньги, и то, насколько грамотно спроектировано акустическое окружение капсюля – это и есть ноу-хау всем известных брендов.
Источники
- https://radioskot.ru/publ/nachinajushhim/mikrofony/5-1-0-754
- https://ProMikrophon.ru/sdelat-svoimi-rukami/kak-sdelat-mikrofon-v-domashnih-usloviyah-svoimi-rukami
- https://agent-time.ru/acoustic/5478-napravlennyj-mikrofon-svoimi-rukami.html
- https://mirrukodelija.ru/mikrofon-svoimi-rukami/
- http://www.adada.ru/master_mic_tehnol_p2.php
Пошаговая инструкция и этапы изготовления микрофона для компьютера
Процедуру изготовления прибора условно можно разделить на несколько этапов.
Схемы и чертежи
Перед началом работы лучше набросать чертеж будущего изделия. Это облегчит последующую сборку. Поскольку это простой вариант, специализированные программы не нужны. Схему можно сделать на бумаге.
Микшер для микрофона
Микшер представляет собой регулятор громкости и амплитудно-частотных характеристик. Простейший можно купить за 3000-4000 руб. Если нет желания тратить на него деньги, можно использовать программные микшеры (например, VoiceMeeter Banana или похожий софт). Их возможности не уступают функциональности «железных» моделей.
Стойка
Если нет желания использовать петличку, для фиксации микрофона можно сделать стойку. Самый простой вариант – изготовить аксессуар из старой настольной лампы. Для этого отсоединяют плафон и на его место приделывают металлический хомутик, диаметр которого позволяет зафиксировать корпус самодельного микрофона.
Плюс такой стойки в том, что ее положение можно менять в соответствии с потребностями владельца.
Схема лампового микрофона Neumann U47
В 40-х годах Георг Нойманн присмотрел лампу VF 14, выпускавшуюся Telefunken для радиоэлектронной промышленности. Главная её особенность была в том, что накал у лампы VF14 не сильноточный, и его можно запитать от высокого анодного напряжения, что Георг Нойманн и сделал. Это был пентод, который, конечно же включили по триодной схеме, благодаря чему микрофон U47 коммутировался всего лишь четырёхжильным проводом. Глубокая ООС по постоянному и переменному току на резисторе R3 придаёт усилителю линейность, стабильность и минимизирует искажения усиления. В остальном схема близка к ЛОМО 19А19, если не считать, что Neumann U 47 – двухмембранный микрофон и может менять характеристику направленности между кругом и кардиоидой. Кроме того, в Neumann U 47 предусмотрено переключение выходного сопротивления, что, видимо, было актуально для аппаратуры 40-вых годов.
Ну и напоследок приведу Вам схему микрофона Gefell RFT , судя по всему, это CM 7151.
Варианты схем усилителя
В другой своей статье, тот же автор предложил готовый предусилитель для микрофона. Это схема с АРУ (Автоматической Регулировкой Усиления). Вот так выглядит эта схема в оригинале (без цепи частотной коррекции):
Благодаря применению полевого транзистора (КП303Ж) в обратной связи, такая схема работает как компрессор и выравнивает громкость голоса, изменяя коэффициент усиления в некоторых пределах.
Схема полностью рабочая, была проверена мной лично на макете и никаких проблем не вызвала. Такая схема очень удобна, например, для микрофонов в конферент-залах и переговорных. Но может быть использована и как предусилитель для микрофона при подключении к компьютеру.
Поэтому от АРУ пришлось отказаться и схема была урезана до обычного неинвертирующего усилителя с постоянным коэффициентом усиления. Такая схема тоже отлично справляется со своими обязанностями.
Когда фантомное питание не требуется
Если для конденсаторных микрофонов наличие фантомного питания обязательно, для ленточных микрофонов оно противопоказано. Подача тока на подобные устройства неминуемо приводит к их поломке.
Схема работы ленточных микрофонов была придумана задолго до появления фантомного питания в музыкальной индустрии — первые ленточные микрофоны появились в 1920-х годах. Для записи сигнала ленточные микрофоны используют тонкую металлическую ленту, колеблющуюся вместе с поступающими звуковыми волнами.
Устройствам подобного типа не нужно дополнительное электричество для работы. Под воздействием тока с напряжением 48 В ленты рвутся, а микрофон перестаёт работать. Современные «ленточники» менее чувствительны к этой проблеме, но правило остаётся тем же — на ленточные микрофоны нельзя подавать фантомное питание.
Кратковременная подача энергии также может стать причиной поломки, если в микрофонный вход подключен несбалансированный источник питания. Сбалансированные источники звука не боятся поступающего электричества.
Как подключить конденсаторный микрофон с фантомным питанием
Встречи и поздравления
Предложения встретиться, поздравления участников форума и обсуждение мест и поводов для встреч.
-
1 января
- Тему:С наступающим Новым 2020 Годом.
- От:Stanislav
ищу работу, выполню заказ, нужны клиенты — все это сюда
-
14 часов назад
- Тему:Разработка антенных систем
- От:MADTeam
Предлагаю работу
нужен постоянный работник, разовое предложение, совместные проекты, кто возьмется за работу, нужно сделать.
-
10 часов назад
- Тему:Tapeout manager (инженер-консультант по вопросам…
- От:nautech
микросхему; устройство; то, что предложишь ты
-
25 февраля
- Тему:Куплю GL823 (SSOP-24)
- От:/RR/
Продам
есть что продать за деньги, пиво, даром ? Реклама товаров и сайтов также здесь.
-
6 часов назад
- Тему:Плата разработчика Xilinx Virtex-6 Fusion IO-dri…
- От:Iko
Тренинги, семинары, анонсы и прочие события
-
15 часов назад
- Тему:Легкий старт в Bluetoooth с STM32WB55!
- От:КОМПЭЛ
Классификация медицинских симуляторов
Александр Суворов говорил: «Теория без практики мертва». Это высказывание точно описывает главное предназначение симуляционного обучения. Современные технологии позволяют добиться высокой степени реалистичности имитируемого объекта для отработки навыков в максимально приближенных к реальности условиях, так как фантомы-тренажеры способны передать тактильное восприятие, реальную подвижность и возможность исследования органов с патологическими изменениями, как и при работе с реальным пациентом.
В 2012 году Российское общество симуляционного обучения в медицине (РОСОМЕД) разработало классификацию симуляционного оборудования по уровням реалистичности (табл. 1). Этот параметр был взят как основополагающий принцип классификации, так как он влияет на цели и результаты учебной работы .
Уровень реалистичности | Что воспроизводится | Примеры | Что отрабатывается | Учебная задача |
---|---|---|---|---|
Визуальный | Внешний вид человека, его органов, демонстрация техники выполнения манипуляций | Классические и интерактивные учебники | Понимание последовательности действий без практической отработки | Визуализация предстоящего упражнения |
Тактильный | Имитация физиологического или патологического состояния органов и тканей, пассивные реакции | Фантомы-тренажеры практических навыков, тканеимитирующие фантомы, манекены для СЛР и интубации | Мануальные навыки, моторика при низком уровне реалистичности и формальной оценки качества выполнения | Доведение до автоматизма моторики отдельных манипуляций |
Реактивный | Простейшие активные реакции без физиологической имитации (включение индикаторов в ответ на правильное действие) | Манекены для СЛР и интубации, комплексы «тренажер + инструменты + муляж» | То же, что и в предыдущем, однако без необходимости постоянного контроля инструктора | То же, что и в предыдущем, однако без необходимости постоянного контроля инструктора |
Автоматизированный | Автоматизированные сложные реакции манекена на разнообразные внешние воздействия | Манекены и хирургические фантомы-тренажеры со сложными, но стандартными типами ответов на действия обучаемых | Когнитивные и сенсомоторные умения | Полноценный сбор информации и выводы в виде постановки диагноза и адекватных манипуляций |
Аппаратный | Обстановка медицинского подразделения с использованием достоверной имитации медтехники | Симуляторы автоматизированного класса или биоматериалы в условиях имитации стационара | Сенсомоторика и когнитивность в конкретных условиях. Навыки работы в команде. Перемещения в операционной | Уверенная способность действовать в реалистичной среде. Отработка эксплуатации приборов |
Интегрированный | Интеграция различных симуляторов (к примеру, хирургического и анестезиологического) в рамках единого комплекса | Комплексные интегрированные системы («ЭйдосМедицина») | Сенсо- и психомоторные навыки в условиях командной работы и работы в сложных условиях | Выработка сложных поведенческих реакций при ситуативной работе в команде |
Практикующий врач при постановке диагноза опирается не только на свой собственный опыт, но и на результаты медицинской диагностики. В современной медицине скорость развития новых методов визуализации зависит от наличия недорогих, настраиваемых и легко воспроизводимых стандартов биологических тканей, воспроизводящих среду визуализации . К таким объектам относятся тканеимитирующие фантомы, они обеспечивают стандарт для оценки, характеристики или калибровки диагностической системы (рис. 2). Фантом подбирается таким образом, чтобы имитировать свойства и характеристики ткани в определенном спектральном диапазоне длин волн, характерном для того или иного медицинского оборудования (рис. 3) . Дальнейший рассказ этой статьи будет посвящен именно тканеимитирующим фантомам.
Рисунок 2. Фантом мозга в качестве стандарта для калибровки УЗИ-сканера и магнитно-резонансного томографа (МРТ). Рисунок адаптирован.
Рисунок 3. Электромагнитный спектр для медицинского оборудования
, рисунок адаптирован
Разного рода ткани и их патологии имеют большое количество разнообразных свойств, например: магнитные, акустические, рентгеновские, тепловые и др. Соответственно, под определенное свойство и нужно настраивать медицинскую технику, усиливая или ослабляя способности фантома (пропускать, поглощать и отражать излучение в том или ином диапазоне длин волн) различными добавками для лучшего качества изображения.
Однополярное питание усилителя
Важным моментом этих схем является необходимость в некоторых дополнительных манипуляциях, связанных с однополярностью питания.
Напряжение смещения (1/2 питания) у нас уже создается на входе схемы и два резистора мы уже сэкономили. Но для того, чтобы это постоянное напряжение не пошло на выход там требуется конденсатор. Для этого нужен С3.
Так же стоит помнить — любой ОУ одинаково хорошо усиливает и переменное и постоянное напряжение. Поэтому необходимо превратить усилитель в усилитель переменного напряжения.
Для этой цели служит конденсатор С1. Благодаря нему коэффициент усиления по постоянному напряжению становится равным единице. А вот переменное напряжение усиливается в соответствии с заданным резисторами коэффициентом.
Как сделать направленный микрофон
Придётся прикупить:
- динамический микрофон МД-201 или любой другой микрофонный капсюль;
- готовый усилитель или собранный самостоятельно;
- наушники от телефона;
- 10-15 см коаксиального провода 50 или 75 ом;
- 9-вольтовый аккумулятор или батарейка;
- небольшой кусочек поролона;
- бархатная бумага, обычно продается в магазинах для поделок.
Схема направленного микрофона не очень сложна. Ее можно спаять не только на печатной плате, но и на плотной картонке.
Трубчатый направленный микрофон своими руками (упрощённая модель)
Скатываем бумагу в трубку диаметров 10 см, обязательно бархатной стороной внутрь. Длина трубки может быть до 50 см. Из поролона вырезается кружок и вставляется в торец трубки. В поролон укрепляется микрофон, припаянный коаксиалом ко входу усилителя. Наушники подключаются к выходу через любой подходящий разъем.
При такой цельной однотрубчатой системе получится отсеять все помехи от посторонних излучателей, но не получится усилить естественным путём акустическую волну от нужного источника, на который направлена трубка. Электроника, конечно, усилит сигнал, но не так качественно, как это делают серийные изделия. Всё дело в том, что на серийных изделий в направленных микрофонах трубчатого типа используется усиление полезного сигнала ещё на пути по трубке к усилителю. Делается это за счёт интерференции, получаемой от наложения акустической волны, идущей по трубке, на волны, дополнительно проникающие внутрь трубки через боковые отверстия в трубке. Можно поэкспериментировать, и наделать таких отверстий самостоятельно, но эффект скорее всего будет отрицательным, ибо там нужно всё аккуратно и чётко рассчитать, в соответствии с теорией.
Делаем направленный микрофон параболического типа
Таким же образом получится сделать и микрофон параболического типа, заменив трубку на подходящую параболу, сделанную из верхней части 5-литровой баклажки или старого отопительного рефлектора. Тут нужно суметь собрать отражённые поверхности тарелки лучи в точке установки микрофона. Помочь в этом может игра с точечным источником света находящемся на расстоянии от тестируемой тарелки-отражателя в тёмном помещении. Необходимо получить яркое пятно света на микрофоне, как на картинке справа.
Сам микрофон должен при этом быть спрятан от посторонних акустических сигналов. Чем точнее вы это сделаете, тем качественнее будет усиление полезного сигнала.
https://youtube.com/watch?v=maNOM8LiKn0
Как получить фантомное питание для микрофона
Большинство современных аудиоинтерфейсов оснащается встроенной схемой, подающей напряжение 48 В через микрофонные предусилители. Активация фантомного питания обычно осуществляется отдельной кнопкой, обозначенной как «+48», «48 V» или «Phantom». В зависимости от возможностей оборудования, фантомное питание может подаваться на каждый вход независимо, либо же поступать на все входы сразу.
Тем не менее ряд устройств — микшеров, звуковых карт и предусилителей — лишён скрытой схемы питания. В таких случаях на помощь приходят отдельные блоки фантомного питания, подключающиеся между входом микшера или интерфейса и микрофоном.
Среди популярных вариантов выделяются:
- ART Phantom II Pro
- Mackie M48
- Behringer PS400
- Pyle PS430
Суть внешних блоков ничем не отличается от встроенной схемы фантомного питания. Блок подключается в розетку и при активации подаёт на подключенный микрофон постоянный ток с напряжением 48 В.